81^x=9/3^x

Simple and best practice solution for 81^x=9/3^x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 81^x=9/3^x equation:



81^x=9/3^x
We move all terms to the left:
81^x-(9/3^x)=0
Domain of the equation: 3^x)!=0
x!=0/1
x!=0
x∈R
We get rid of parentheses
81^x-9/3^x=0
We multiply all the terms by the denominator
81^x*3^x-9=0
Wy multiply elements
243x^2-9=0
a = 243; b = 0; c = -9;
Δ = b2-4ac
Δ = 02-4·243·(-9)
Δ = 8748
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{8748}=\sqrt{2916*3}=\sqrt{2916}*\sqrt{3}=54\sqrt{3}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-54\sqrt{3}}{2*243}=\frac{0-54\sqrt{3}}{486} =-\frac{54\sqrt{3}}{486} =-\frac{\sqrt{3}}{9} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+54\sqrt{3}}{2*243}=\frac{0+54\sqrt{3}}{486} =\frac{54\sqrt{3}}{486} =\frac{\sqrt{3}}{9} $

See similar equations:

| X-3/2=d | | 2x+3/x+7=5/8 | | 2x^2/3-5=18 | | 2^6n*8=32^n+3 | | (n/(-2))+1=15 | | 7+2/3x=3-1/3x | | 2(w-4)=18 | | -1/3n=12n=-36 | | (3k-6)(k-5)=0 | | 53x-2.53x-6=125;xєN | | 5/4x-1+-1/(4x-1)^2=4 | | 7(m+8)=91 | | 16+4(k-6)=0 | | 1.5x+3.75=4.25+x | | 3*35+8y=117 | | X+6/14+x-3/5=5x-4/8 | | -34=64m-4 | | P+3p=96 | | 2y+3y-3+8=180 | | 18-9x=25 | | 3p-15=39, | | 3p-15=39, | | x+20+x+x+50=180 | | 14x+9x=45 | | 3x^2-5x-28=4x^2+6x | | 5k+4/3=5k-4/2 | | 10x/4=7/4 | | y/10=200/100 | | (5m)÷3=35 | | 2(x+x+5)=180 | | 2x-6=-4x+4 | | (p+2)÷3=5 |

Equations solver categories